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Abstract. We study the effective diffusivity tensor D for a contaminant carried by a steady 
periodic two-dimensional velocity field. in the limit of small molecular diffusivity ,y. We 
discuss a generic model where the transport  process is strongly anisotropic for the presence 
of channels (where,  if one neglects Brownian motion, the motion is ballistic) among the 
convection cells. It is shown that for the longitudinal (a long the channels direction) 
diffusivity one  has:  D , S  I/,Y, while for the transLerse diffusivity: D _ X , y .  The behaviour 
D - D_ z,y’ ’, which is typical of the Rayleigh-Benard system, is found to hold at 
intermediate values of ,y. The scaling arguments are supported by extended numerical  
simulations. 

1. Introduction 

Transport in fluids is a complicated and fascinating phenomenon which moreover has 
a great interest from practical and applicative purposes [ 11. Taking into account the 
molecular diffusion, it can be described by the following Langevin equation: 

In  (1.1) u ( x ,  t )  is the velocity at 
such that 

(77,) = 0 and 

(1.1) 

the position x at the time t and q is a white noise 

( ~ , ( f ) ~ , ( t ’ ) )  = 2xS , ,a ( t  - r’) 
where x is the molecular diffusion coefficient. It is important to stress that transport 
and  diffusion properties are affected by the presence of Lagrangian chaos [2], i.e. the 
chaotic behaviour in the motion of a fluid element described by the deterministic 
equation 

dx  
-= u ( x ,  t ) .  
dr  
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The dispersion of a contaminant in a fluid is thus the result of two different effects: 
Lagrangian chaos and molecular diffusion. In general, it is much faster than expected 
by considering only the molecular effects. Let us recall that the Lagrangian chaos can 
be present even i f  the velocity field u ( x ,  t )  is not chaotic [ 3 ] .  Moreover a chaotic 
velocity field is neither a necessary nor a sufficient condition (although strange enough) 
for the Lagrangian chaos, as shown in the Lorenz model [4]. Real fluids practically 
always have a certain degree of Lagrangian chaos, e.g. in 2~ one just needs that the 
stream function be time dependent. The understanding of the diffusion process thus 
is a very hard task, since it may depend in a complicated way on the detailed structure 
of the velocity field. 

Two limit situations have nowadays been treated: 
( i )  fully developed turbulence, where the molecular effect can be ignored on a 

large range of scales; 
(ii) fluids where (1.2) is quasi-integrable and the degree of Lagrangian chaos is 

very small. 
It is clear that the latter case can be highly non-trivial. For this reason, it is important 

to study simple integrable velocity fields (in ZD corresponding to time-independent 
stream functions), with the addition of a noise term. 

The main object of our  paper is the effective diffusivity given by the covariance 
tensor: 

Here x is the position of the passive impurity and the average ( . . . ) is taken over 
an  ensemble of test particles. The indices i , j  = 1 , .  . . , d label the components of x. 
We want to focus our attention to the study of transport in the presence of convection 
rolls and  molecular diffusion. 

A widely studied flow, in the context of 3~ Lagrangian chaos is the Arnold-Beltrami- 
Childress ( A B C )  flow [3,5], described by the velocity field: 

U = ( B  cos y +  C sin z, A sin x +  C cos z,  A cos x +  B s i n y ) .  (1.4) 

This flow is one of the first examples of 3~ Lagrangian chaos which, in addition, 
satisfies the Beltrami condition '7 x U =constant - U. 

We have analysed a steady and periodic in space velocity field obtained by projecting 
the A B C  flow on the xy plane with C = 0, since in the recent literature the case lAJ = IBI 
has been widely discussed. Its qualitative behaviour models the Rayleigh-BCnard 
convection as the phase space consists of square cells separated by lines (separatrices) 
where the rotation period diverges. The dispersion of a passive impurity on large scale 
is impossible without the molecular diffusion that allows the jumping among different 
rolls. The relevant non-dimensional parameter is therefore the Peclet number which 
measures the relative importance of advection over diffusion 

VL p =- 
X 

where V and  L are the typical rotation velocity and  size of a cell. The Peclet number 
can be regarded as the ratio between the diffusive time L ' / x  and the turnover time 
T, - L /  V in a cell. The limit x + 0 is thus singular. For a large Peclet number, which 
is the physical interesting situation, the effective diffusivity has been found (theoretically 
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[6] and experimentally [7]) to scale as: 

D , , a X p ~ ” = ( v L ) ’ ~ ’ x ’  ’ (1.5) 

and thus to be larger than x. 
When IAlf IBI, narrow channels arise among the convection cells, in a direction 

which depends on the relative magnitude of 1Al and lBI. The motion of a test particle 
inside a channel appears to be ballistic and this enormously enhances the transport 
along the channels direction. The process is strongly anisotropic and can be regarded 
as due to long runs in the channels interrupted by trapping periods inside the rolls. 
The effect of a small noise (i.e. a small diffusivity x), is responsible for the jumping 
in the direction transversal to the channels. 

Our main result, supported by numerical simulations, is that the effective diffusion 
coefficients DIl (along the channels direction) and D, (along the direction transversal 
to the channels) are given, in the limit of small molecular diffusion, by 

L? 
V D a- I lAl- I B /  I3x-’ and D,a ~ l l ~ l - l ~ l l - ’ x .  (1.6) 

The anisotropy enhancement seems to disappear for (not too large) values of x where 
one recovers the IAl= IBl scaling (1.5) 

Dl -D,a(  VL)’ 2 x ” 2 .  (1.7) 

In section 2, we analyse the model in some detail, and give the arguments which 
lead to the scaling behaviour (1.6) and (1.7) of the covariance tensor as a function of 
the Peclet number and channel width (i.e., as a function of x and IAl - IBI). In section 
3, we describe the numerical simulations which support our rough perturbative argu- 
ments. In section 4, the reader can find the conclusions and a discussion on the 
relevance of our model for the description of the dispersion in some situations. 

2. The model and the scaling arguments 

We study the Langevin equation (1.1) in two dimensions with U the velocity field 
obtained by projecting the ABC flow with C = O  on the x-y plane: 

U = ( B  cos y, A sin x)  x = ( x , y ) .  (2.1) 
By a suitable choice of length and time units, we have L = O( 1) and V = O( 1); so we 
can set B = 1 and A = -( 1 + 6 ) .  In the following in all the relations among quantities 
with dimensions we omit multiplicative factors 0 ( 1 ) ,  such as L and V. The stream 
function becomes $ = -sin y + (1 + 6 )  cos x. For 6 = 0 the field (2.1) describes convec- 
tion cells of width 277 where the motion of a test particle is always periodic in the 
absence of a noise term. The separatrices are the lines where the stream function is 
zero (for 6 = 0) and they cross in the unstable hyperbolic fixed points of the flow (see 
figure l ( a ) ) .  When 6 > 0 the border lines between cells do  not coincide and there 
appear channels along the y direction (see figure l ( b ) ) .  By simple perturbative 
calculations one finds that for small 6 the width of a channel is -6, although the 
maximum distance between the separatrices increases up to near the unstable 
fixed points. Note that 6 < O  corresponds to channels along the x axis. The motion 
of a particle inside the channels, if one neglects Brownian motion, is ballistic and the 
velocity field changes sign between neighbouring channels. The basic mechanism of 
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Figure 1 .  Structure of the separatrices for equation (1.21, with the field (2 .1)  and :  ( a )  
A = - l ,  B = l ;  ( 6 )  A = - l . 3 ,  B = l .  

the transport is illustrated in figure 2 .  For small x, a test particle can jump into a 
channel, because of molecular diffusion. Then, one has a ballistic motion inside the 
channel (with velocity V, - O( 1) either in the up  or  in the down y direction) stopped 
by a capture from a cell after a time T,- 6'/x, and so on. Let us consider the case 
for which the ratio 

TJ T, >> 1 i.e. 6' /x  >> 1 

since T,- O( 1). This dimensional estimate of the diffusive times in the channels allows 
us to compute the effective diffusivity tensor, that in our coordinates is diagonal with 
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D, = D, ,  and Dl, = D z z .  The typical length run along a channel is easily seen to be 

L, - T, V, - 6'/x. (2.2) 

The probability p to find a particle in a channel is proportional to its width -6 ,  
and thus we obtain: 

On the other hand, the transport in the x direction can be described as a random 
walk where the timestep is T, and the length step is the cell width -27r. This leads to 

so that one obtains 

X 
6 

D_ -- (2.5) 

We remark that the presence of the ballistic channels produces strong changes in the 
diffusion coefficients: from D = D_ - X I  ' to Dl - 6 ' / x  and D, - X I S .  

Let us stress that these arguments are valid only in the limit of large T,/T,. By 
this we mean that the time spent in the channels should be large with respect to the 
circulation time T,, i.e., x << 62. When Tc/ T, becomes smaller than unity, a particle 
has not enough time to perform a significant run along a channel between two successive 
trappings. Practically, the transport process can be described as if there were no 
channels. In  this limit (x + 0, 6 -+ 0, with T,/ T,- l ) ,  the anisotropy disappears and, 
using the analysis developed by Pomeau and other authors [6] for a two-dimensional 
cellular structure without channels (case 6 = O ) ,  one expects D- - Dll cc x"'. 

3. Numerical study of the model 

We have verified our simple dimensional argument, by a numerical analysis of the 
model. We let N = 1000 test particles evolve, uniformly distributed in the square 
( 0 , 2 n )  x (0,27r), and computed the covariance 

(3 .1 )  

The indices k and j label the particles and i = 1,2 indicate the x, y component of the 
vector x. The effective diffusivity tensor is thus given by: 

(3.2) 

The numerical integration of the Langevin equation has been performed by the 
Runge-Kutta algorithm, modified in order to take into account the white noise term 
[8], with an  integration step A t  = 0.01. In order to get the limits in (3.2) stabilised, we 
had to follow the ensemble evolution for -20000 time units (i.e. 2 x  lo6 integration 
steps), when ,y> and for -80000 time units when x < ~ O - ~ .  The point with 
,y = 1 x has been obtained with f = 340 000. In figure 3 we show the longitudinal 
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Figure 3. The longitudinal diffusion coefficient against the molecular diffusion coefficient 
for the field i 2 . l )  and :  1A - ; E ;  =0.30 i + 1, 0.15 i x ), 0.075 (7). The (b roken)  lines with 
slopes -1  and  112 are d r a h n  for comparison. The numerical errors bar  are comparable  
with the 5ymbols size. 

diffusivity D as a function of the molecular diffusivity x. At large T,/ T,= 6'/x,  which 
is the control parameter in our model, we observe the expected scaling Dll cc 1/x, while 
at larger molecular diffusion (x> 8 2 )  one recovers the standard scaling law for cell 
convection D , K x '  '. Let us stress that, following our arguments, one expects a 
minimum of the longitudinal diffusivity D at the transition between the two scaling 
regimes. By assuming D - S ' / x  - X I  ', one thus sees that the transition takes place 
when the control parameter Tc/ T, becomes 0 ( 1 ) ,  that is for ,y - Finally, figure 
4 ( a )  shows that for large Tc/T , ,  as predicted by equation (2.3), the longitudinal 
diffusivity Dll scales as 87/,y. In the same region the transverse diffusivity D- exhibits 
the scaling behaviour S / x ,  in accord with equation ( 2 . 5 )  (see figure 4( b ) ) .  Let us note 
that the agreement between the numerical data and  the results of section 2 is rather 

x x 6  
Figure 4. ( a )  The longitudinal diffusion coefficient against x!S' (together with a dashed 
line of slope -1). ( b )  The transverse diffusion coefficient against x / S  (together with a 
broken line of slope 1 ). The symbols refer to S = !AI - ( B (  = 0.30 ( + ),0.15 ( x I ,  0.075 (0). 
The numerical errors bar  are  comparable  with the symbol size. 
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good for Dl, , but only fair for D - .  This is because our scaling arguments of section 
2 d o  not consider in (2.3) and ( 2 . 5 )  an  additional linear term in x due  to the bare 
molecular diffusion. This is negligible for Dll but not for D2 if 6 is not very small. 

We have also computed the value of the kurtosis 

in order to have a quantitative indication of the flatness of the spreading distributions 
in the x and y directions. For large r the kurtosis seems to tend to the Gaussian value 
K ,  = 3. Let us stress that in spite of the apparently 'anomalous' diffusion process (long 
runs interrupted by trappings), the diffusion is standard and Gaussian. 

4. Concluding remarks 

We have proposed a simple mechanism of anisotropic contaminant transport which 
is quite general in two- and three-dimensional steady periodic flows. The presence of 
ballistic channels is indeed a common feature of a large class of transport phenomena. 
We thus believe that our model can be a useful tool in many cases. In fact this model 
presents the same behaviour of the dispersion of a contaminant for laminar flows in 
long straight tubes or channels. By the direct analysis of the equation for a scalar field 
0 passively advected 

a,e+C ( u e )  =xae. (4.1) 
Taylor [9] has shown that there is a strong enhancement of the longitudinal diffusivity 
D , while the radial inhomogeneities are smoothed out: 

$ 2  " 2  

1 - x  48 
D ---+x (4.2) 

where s  ̂ is the radius of the tube, and U the average velocity of the flow. Note that 
(4.1) is the Fokker-Planck equation related to the Langevin equation ( 1 . 1 ) .  The first 
term of the R H S  of (4.2) always dominates, because s^2U2/,y2 is very large ( > > 1 ) ,  except 
for the case of very slow flows and/or  extremely fine capillaries. The presence of 
transverse velocity gradients causes the sharp increase of Dl l .  It is worth stressing that 
the larger the molecular diffusion the smaller the longitudinal dispersion. It is not 
difficult to understand that the leading term in (4.2) can be obtained by the arguments 
discussed in section 2 .  The dependence on ŝ ' instead of 6' is due  to the fact that here 
all the particles contribute to the diffusion, while in the case studied in section 2 only 
a fraction p - 6 contributes tu Dii . 

We now briefly discuss the connection of our work with the study of the transport 
properties of chaotic deterministic systems (i.e. without molecular diffusion). 

Let us remark that we have described a picture for the transport which is very 
similar to the scenario which has been actually observed in the truncated ZD Navier- 
Stokes equations [lo].  Near the critical Reynolds number Re,, for which the stream 
function +(x, t )  becomes time dependent via a Hopf bifurcation ( a  general mechanism 
for the onset of Lagrangian chaos in ZD systems), one has, if R e =  Re,+ E ,  $(x, t )  = 
&(x)+ ~ ' " f ( x ,  ~ ) + O ( E )  where f ( x ,  1 )  is periodic in time. The separatrices structure 
given by &(x) is qualitatively equal to the one shown in figure l ( b )  (see figure 3 of 
reference [4]). Chaotic layers appear around the separatrices and  the diffusion takes 
place for P > E , .  The test particle is thus trapped for long times in a small limited 
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region (where it performs an irregular motion) and then escapes along ballistic channels 
until a subsequent trap, The qualitative behaviour of the tensor D is found to be the 
same as the one given by the Langevin equation: the longitudinal diffusivity diverges 
approaching E , ,  D CC ( E  - E ~ ) - '  l; while the transversal diffusivity vanishes as L3-K 
( E  - E , ) " ~ .  In a rough way, equation (1.1) with an integrable velocity field can be 
regarded as a crude approximation of a Lagrangian chaotic system described by 
equation (1.2). In this sense, the perturbation strength ( E  - E , ) '  a plays the role of the 
noise variance x. 

We must note that Lagrangian chaos is also possible in 3~ steady space-periodic 
flows. One then may conclude that a contaminant is dispersed by the flow. However, 
regular trajectories along ballistic directions appear for 3~ generic chaotic flows. For 
instance, figure 5 shows the positions of 1000 particles, which are initially uniformly 
distributed in the cube (0,257) x (0,257) x (0,257), after a time t = 10 000 for the full 3~ 

ABC flow (1.4) with parameters A = 1.15, B = 1, C = 0.1. One sees that some particles 
(spots very far from the origin) have run ballistic trajectories. This provides evidence 
that, for every initial condition, Lagrangian chaos without molecular diffusion is not 
sufficient to disperse a contaminant in 3~ steady velocity fields, such as those describing 
convection roll structures. On the contrary, without a molecular diffusion mechanism, 
the dispersion of contaminants is obtained for all initial conditions only when velocity 
fields are time-dependent, both in 2~ and 3 ~ .  We want to note, finally, that in the case 
of 2~ time-dependent velocity field an anomalous diffusion (i.e. a:( t )  not linear with 
t )  has also been observed [ll].  

After the completion of this paper we received reference [12] in which similar 
results have been obtained by a different method. 

- 5000 

- 10000 4 

- 200 0 200 

X 

Figure 5. The positions in  the x - j  plane of 1000 particles, initially in  a cube of side 2n 
at the origin of the axes, after they evolved for 10 000 units of time according to the 31) 

A B C  flow. 
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